【基于遗传算法的室内光无线通信功率分布优化方案】低功率短距离的无线通信技术

  摘要:室内光无线通信(OWC)具备频谱资源丰富、功耗低、抗电磁干扰等诸多优势,因而越来越为业界所关注。然而,由于多径传输效应的存在,即使在同一室内房间,同一接收端在不同的接受位置依旧难以获得一致的令人满意的高质量信号。针对这一问题,提出了一种基于遗传算法的动态优化方案,以期降低接受信号功率的波动程度。相应的,给出了基于商用光探测器(视场角为50°)的仿真实验。具体的仿真结果显示该优化方案可以将波动范围(相较于接收到的光信号功率的最大值)从优化之前的50.3%降低至34.6%,同时优化操作对照明功能的影响是可以忽略不计的。
  
  关键词:光无线通信;遗传算法;优化;绿色照明;信号覆盖
  中图分类号: TN911.74文献标志码:A
  
  Genetic algorithm based power distribution optimization scheme for
  
   indoor optical wireless communication
  XU Chun*
  
  College of Computer Science and Engineering, Xinjiang University of Finance and Economics, Urumqi Xinjiang 830012, ChinaAbstract:
  As indoor Optical Wireless Communications (OWC) can provide enormous spectrum source, lower power need, immunity to interference caused by other radio frequency (RF) wireless devices, it is earning increasing attention. However, due to multipath transmission, it is hard to obtain satisfyingly uniform signal quality at the receiving terminal even for locations within the same room. A genetic algorithm based optimization scheme is proposed as a candidate approach for OWC to reduce the variability of the received power. And presented results based around the use of a commercially available detector with a FOV=50 deg show that the dynamic range of received power can be reduced to 34.6% against the peak optical power from 50.3% while the impact on illumination function is negligible.As indoor Optical Wireless Communications (OWC) is characterized by enormous spectrum source, lower power need, immunity to interference caused by other Radio Frequency (RF) wireless devices, it has attracted an increasing attention in the field. However, due to multipath transmission, it is hard to obtain satisfactory uniform signal quality at the receiving terminal even for locations within the same room. A genetic algorithm based optimization scheme was proposed as a candidate approach for OWC to reduce the variability of the received power. And the simulation results based upon the use of a commercially available detector with the field of view of 50 degree show that the dynamic range of received power can be reduced to 34.6% against the peak optical power from 50.3% while the impact on illumination function is negligible.
  Key words:
  Optical Wireless Communication (OWC); genetic algorithm; optimization; green lighting; signal coverage0引言
  目前,传统的无线频段已经过于拥挤且需要很高的功耗以满足不断增长的数据业务。这预示着未来传统无线技术及60GHz技术将无法满足持续增长的无线数据需求(如Mobile TV及CMMB)。另一方面,新型的光无线接入技术具备带宽资源丰富、保密性强、传输潜能巨大等诸多优点,因而受到了许多的关注和研究支持[1-10]。
  针对光无线通信的许多研究已经相继问世,如何有效地克服多径信道传输对通信表现的不利影响,依旧是光无线系统设计层面一个极富挑战的问题[11-14]。由于相应的信道特性不仅取决于房间的具体尺寸、室内与光线发生反射作用的表面反射特征,而且受到室内物体的影响,这一系列因素使得同一光无线移动接受终端在不同的室内接受位置可能显示出明显的表现差异。
  在已有的研究中[1],已针对接收端光信号功率分布的不理想状况给出了量化分析,作为已有工作的延伸,本文提出了一种基于遗传算法的优化方案对发送端光功率进行控制进而最终在室内不同接受位置获得一致的表现特性。
  1室内光无线系统模型
  1.1常规漫射模型
  为了计算入射到探测器上的全部光信号功率(含经过反射路径部分),将室内环境分成众多尺寸很小的表面反射元素,其中每一个反射元素可以认为具有理想的朗伯反射特性。考虑到多次反射对接收端的影响已经相当微小,本文只考虑三次以内反射对接收端的贡献。具体的系统分析场景为一个空的长方体状房间,相应的长宽高尺寸分别是8m,4m,3m。房间内四周墙壁、天花板及地面的反射系数分别是0.8,0.8和0.3,如图1所示。
  
  图片
  图1天花板处安装21组LED灯的室内光无线通信场景
  1.2接收信号功率
  
  在上述场景配置中,I=21组照明灯被均匀地布置于天花板上,如图1所示。其中,每组灯由49(7×7)个LED组成,每组灯中LED间距是4cm。依据文献[1]所述,单一LED的辐射功率分布可由朗伯辐射特性很好地近似,也就是说辐射强度与发射角度满足余弦关系。此外,本文沿用已有的实测结果,LED的半功率角为Φ1/2= 54deg,中心辐射强度分别为I(0)= 32.69cd,单一LED的发射功率为Pt = 174mW [1]。本文将房间内距地面1m的平面作为多个接收器均匀分布的通信平面,接收位置的总数是J=1568。在接收端,接收器的视场角50deg,接收器的有效探测面积为A=1cm2。
  
  每个接收器所接收到的具体信号功率可由直射信道增益Hd(0)以及反射信道增益Href(0)如式(1)算出:
  Pr(Rj)=∑Ii=1{PtHd(0;Si,Rj)+∫AsurPtHref(0;Si,Rj)}(1)其中:Si代表第i组LED灯, Rj是第 j个接收器而Asur是所有反射表面的面积总和。对应地,在Si和Rj之间的信道直流增益可由式(2)得到:
  Hd(0;Si,Rj)=
  
  (m+1)A2πD2dcosm(φ)Ts(ψ)g(ψ)cos(ψ),0≤ψ≤Ψc
  0,ψ>Ψc (2)其中:φ是辐射出射角, ψ是辐射入射角,m 是光源Si的朗伯指数, A是光探测器的有效探测表面积,Dd是Si同Rj之间的距离,Ts(ψ)是光滤波器的接受增益且Ψc每个接收器的视场角代表。此外,g(ψ)为光集中器的增益,具体当0≤ψ≤Ψc该增益可以表示为 g(ψ)=n2/sin2(Ψc),而其他情况下g(ψ)=0。
  第4期
  徐春:基于遗传算法的室内光无线通信功率分布优化方案计算机应用 第32卷
  
  为进一步计算通过反射路径获得的直流增益,本文将实验房间所有内表面分割为大小相同的微分元素。每个元素的面积为dA 且反射系数是ρ。所有这些微分元素都可以看作一般的朗伯源,它们将入射到自身的光信号沿自身法线方向遵从朗伯模式向外进行漫反射。由于本文将考虑三次以内的反射情况,所以这一经过反射路径的直流信道增益可依据式Href(0;Si,Rj)=∑3k=1(∑Nl=1H(k-1)(0;Si,δl)H(0)(0;δl,Rj))给出。其中:N 为微分元素的总数,k为反射次数。而H(0)(0;δl,Rj)的具体表达式可通过参考式(2) 进一步得到。此外, H(k-1)(0;Si,δl)的对应表达式可以通过式(3)迭代进一步得到:
  H(k-1)(0;Si,δl)=∑Nm=1H(k-2)(0;Si,δl)H(0)(0;δl,δm) (3)其中δl同δm分别代表两个独立的反射面微分元素。
  1.3照明特性
  室内光无线系统的另一个重要性能参量是实际房间内工作面上的水平光照度。当不添加反射作用带来的影响时,水平面的照度可由式Eh=I(0)cosm(φ)cos(ψ)/R2具体获得,其中:φ为出射角,ψ 为入射角, R为光源与接收器表面之间的距离 [1]。m为朗伯指数,可依据式m=-ln 2/ln (cos Φ1/2)确定。
  为了能够评估反射作用对最终亮度分布带来的影响,每个反射元素被看作一个二次光源。这样一来,每个元素的光通量可以通过式F=ρeEheAe计算得到,其中:ρe为反射元素的反射指数,Ae为反射微分元素的面积。进一步就可以将工作面上整体水平光照度表示为:
  E=Eh+∑Ni=1Iicos(φi)cos(ψi)/r2i(4)
  
  其中:φi为第i个反射微分元素的出射角,ψi为该反射微分元素的入射角,ri为该微分元素和照射表面间的距离,Ii=(me+1)F/2π为该反射微分元素的最大光照强度。本文将所有的反射微分元素视为朗伯漫射源,具体的朗伯指数是me=1[1]。2本文提出的优化方案
  2.1优化因子
  复杂的室内光无线信道,对应于通信面上不同的接收位置会出现差异很大的接受表现,在很多领域应用智能技术已经被证明能够有效地缓解此类限制。假设所有的LED灯由独立的因子0   
  4结语
  室内光无线通信被寄希望于实现室内范围的无线覆盖。由于多径传输信道及LED光源的方向性,在通信接受面上依旧难以获得一致的信号功率覆盖。本文提出了一种基于遗传
  
  算法的定向优化方案来优化接受信号功率分布,仿真结果显示该算法能有效地降低功率波动范围,并且对室内光无线系统的照明功能影响是可以忽略不计的。由此可见,该方案适合室内光无线通信的改进需求,具有很好地优化表现和快速收敛特性。参考文献:[1]
  WANG Z, YU C, ZHONG W, et al. Performance improvement by tilting receiver plane in M.QAM visible light communications [J]. Optics Express, 2011,19(14):13418-13427.
  [2]
  O’BREAN D C, FAULKNER G. Home access networks using optical wireless transmission [EB/OL].[2011-07-01]. http://202.194.20.8/proc/pimrc2008/content/papers/1569121263.pdf.
  [3]
  SARKER S, DIXIT S, MUKHERJEE B. Hybrid wireless.optical broadband.access network (WOBAN): A review of relevant challenges [J]. IEEE Journal of Lightwave Technology, 2007, 25(11): 3329-3340.
  [4]
  VUCIC J, KOTTKE C, NERRETER S, et al. 513 Mbit/s visible light communications link based on DMT.modulation of a white LED [J]. IEEE Journal of Lightwave Technology, 2010, 28(24): 3512-3518.
  [5]
  GREEN R J. Secure communications: The infrared alternative [C]//Proceedings of IEEE ICTON Mediterranean Winter Conference 2007. [S.l.]:IEEE,2007: 1-4.
  [6]
  CARRUTHERS J B. Propagation modeling for indoor optical wireless communications using fast multi.receiver channel estimation [J]. IEE Proceedings, 2003, 150(10): 473-481.
  [7]
  DELGADO F, QUINTANA I, RUFO J, et al.Design and implementation of an Ethernet.VLC interface for broadcasting transmission [J]. IEEE Communications Letters, 2010,14(12):1089-1091.
  [8]
  BERRY J R, KAHN J M,KRAUSE W J. Simulation of multipath impulse response for indoor wireless optical channels [J]. IEEE Journal on Selected Areas in Communications, 1993, 11(3):367-379.
  [9]
  GRUBOR J, RANDEL S, LANGER K D, et al.Broadband information using LED.based interior lighting [J]. IEEE Journal of Lightwave Technology, 2008, 26(24):3883-3892.
  [10]
  TANAKA Y. Indoor visible light data transmission system utilizing white LED lights [J]. IEICE Transactions on Communication, 2003 E86.B(8): 2440-2454.
  [11]
  NTOGARIG, KAMALAKIS T, SPHICOPOULOS T. Performance analysis of non.directed equalized optical wireless systems [C]//Proceedings of 2008 IEEE Communication Systems, Networks and Digital Signal Processing. [S.l.]:IEEE,2008: 156-160.
  [12]
  ELGALA H, MESLEH R, HAAS H. Indoor broadcasting via white LEDs and OFDM [J]. IEEE Transactions on Consumer Electronics, 2009, 55(3): 1127-1134.
  [13]
  KOMINE T, LEE J H, HARUYAMA S, et al.Adaptive equalization for indoor visible.light wireless communication systems [C]// IEEE Transactions on Wireless Communications, 2009,8(6):294-298.
  [14]
  HASHEMI S K. Orthogonal frequency division multiplexing for indoor optical wireless communications using visible light LEDs[C]//Proceedings of 2008 IEEE Communication Systems, Networks and Digital Signal Processing. [S.l.]:IEEE, 2008: 174-178.
  [15]
  BACK T, HAMMEL U, SCHWEFEL P. Evolutionary computation: Comments on the history and current state [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1):3-17.

推荐访问:无线通信 遗传 算法 功率