【二维光栅纳米位移测量系统的设计与分析】 光栅传感器测位移

  摘 要:文章提出了一种以衍射光栅为基准件的二维纳米位移测量系统,阐述了系统的组成和光路�构,分析了系统的测量原理。最后利用Lighttools软件对系统的光学�构进行仿真设计,研究系统干涉信号的变化规律,为后续的光路优化和误差补偿提供了理论模型。
  关键词: 衍射光栅;干涉;位移测量;Lighttools软件
  中图分类号:TN16 文献标识码:A
  
  Design of 2-D Laser Interferometer System with Diffraction Grating
  
  LI Shuai
  (School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei Anhui 230009, China)
  
  Abstract: 2-D nano-displacement measurement system is developed based on diffraction grating. This system consists of optical structure and electronic subdivision circuit. The measurement principle of the system is proposed. And by the simulation, the change rule is found, theoretical model for the follow-up structural optimization and error compensation is provided.
  Keywords: diffraction grating; Interference; displacement measurement; lighttools software
  
  引 言
  
   衍射光栅作为计量光栅的一种,在精密测量、超精密加工和纳米技术等领域有着广泛的应用。与其它纳米测量方法相比,如STM法、SPM法、电容电感测微法和激光干涉仪法等,光栅纳米测量方法具有以下优势:(1)高精度,低成本,由于精密的光刻技术和电子细分技术,以及莫尔条纹所具有的对局部误差的消除作用,光栅传感器可以得到很高的测量精度;(2)同时具备大量程、高分辨率的特点,尤其在大量程方面,光栅传感器的测量精度仅次于激光测量,而成本却比其低得多;(3)较强的抗干扰能力,其对环境的适应性比激光干涉仪更强。因此,研制基于衍射光栅的二维纳米测量系统具有重要的现实意义。
  1 系统组成
  
   二维光栅纳米位移测量系统主要是基于光栅衍射与相干光干涉原理组成的几何光学测量系统,整个系统由几何光路部分和信号处理部分组成,其�构如图1所示。由半导体激光器发出的光束经过起偏器P1垂直入射到二维光栅表面,反射的正交衍射光通过偏振分光光路形成相位相差90°的干涉信号,然后进入光电转换模块使得光学信号转换为正弦和脉冲电信号,然后由计数细分电路对信号进行计数细分处理,最后把数据处理的�果经过误差补偿后进行记录和显示。
  
  2 光路�构设计
  
   整个系统的光路�构如图2所示,为了提高信号的输出频率,光路采用二次衍射设计。
   由半导体激光器发出的光束经过偏振分光镜PBS2后分成振动方向相互垂直的偏振光的s光和p光。若s光被PBS2反射,经过四分之一波片Q3后变为圆偏振光,该圆偏振光经过反射镜R反射后再次通过四分之一波片Q3,该光束变为p光直接通过PBS2,经过Q4后变为圆偏振光在光栅表面衍射,适当调整光栅与读数头之间的距离,-1级衍射光垂直入射到平面反射镜M2上后沿原路返回,通过光栅表面再次衍射后,+1级衍射光沿原路进入PBS2,此时经过Q4的再次旋光变为s光,s光被PBS2的偏振分光面全部反射后,经Q2和M1返回后变为p光,该光束完全通过PBS2偏振面出射,进入偏振光检测部分。同理对于激光器出射光经PBS2透射的p光经过Q2和M1返回变为s光,被PBS2的偏振分光面全部反射,通过Q4后变为圆偏振光被衍射光栅表面衍射,+1级衍射光被M2反射后再次衍射,再次衍射后的-1级衍射光沿原路通过Q4进入PBS2,变为P光全部通过PBS2的偏振分光面,经过反射镜R和四分之波片Q3后,变为s光再次进入PBS2,经过PBS2的偏振分光面后被全部反射进入偏振光检测部分。
  
  3 位移测量原理
  
   二维衍射光栅系统可以同时对两个方向上的位移进行测量,其基本原理是利用衍射光栅的多普勒效应。当LD激光器发出一束频率为f0,波长为λ的光垂直入射到光栅表面,由衍射光栅的性质可知,光栅在某一方向上运动时,在此方向上形成的衍射光束会发生一定的相移。如图3所示,根据多普勒效应,X方向上的±1级衍射光的频率为
   式中c为光速,v为光栅在X方向上的运动速度,θ为衍射光束的衍射角。若采用图2的二次衍射光路设计,则由M2反射出的光入射到光栅表面又发生一次多普勒频移,此时,X方向的±1级衍射光的频率为
   因此,光栅在平面内移动时,X方向上的光电探测器所接收的干涉条纹信号可以表示为
   由式(7)、(8)可以看出,当光栅移动四分之一栅距时,光栅偏振干涉输出信号明暗变换一次,对应输出光电转换信号一个周期(2π)。只要把四象限光电探测器置于适当的位置,使光电阵列接收到四个相差π/2的光强信号,通过对这四个信号的计数与细分处理即可计算出实际的位移量。
  
  4 光学系统仿真
  
   在二维衍射光栅测量系统中,光栅的定位误差是影响系统干涉信号的主要系统误差。如图4所示,光学镜头与光栅之间存在五个自由度,分别为X方向上的偏摆、Y方向上的转动、Z方向上的俯仰、Y方向上的侧移与Z方向上的平移。因此利用Lighttools软件进行仿真,以分析光栅在五个自由度上对干涉信号的影响。
   图5即为采用Lighttools软件依照图2所完成的3D模型。
   该3D模型设定光栅采用1,200线/mm的二维平面光栅作为标尺,光束波长为635nm,探测器接受面为1×1mm,根据图4以光栅分别偏摆俯仰和转动0.05°以及在Y和Z轴向上各平移5个光栅常数来测定系统干涉光点落在光电探测器上的位置状况,得出数据如表1所示。
   由图表可以看出,俯仰和偏摆对系统干涉信号的影响较大,在进行实际对位安装时应注意X轴向偏摆与Z轴向俯仰对干涉信号的影响,以产生高质量的干涉信号。
  
  5 � 论
  
   二维光栅纳米位移测量系统是一种高精度,大量程且成本较低的精密测量系统。其精度主要取决于系统干涉信号的质量,上文采用Lighttools软件设计的光路模型分析了光栅在五个自由度上对干涉信号的影响,发现俯仰和偏摆对系统干涉信号影响较大,为后续的光路校准优化和误差补偿提供了理论依据。
  
  参考文献
  [1] Prospectus of the High-Resolution Canon Laser Linear Encoder L-10418. Canon USA, Inc., Components Division, 1989.
  [2] S. Ishii, T. Nishimura, K. Ishizuka, M. Tsukiji. Optical type encoder including diffraction grating for producing interference fringes that are processed to measure displacement[C]. U.S. Patent No. 4, 912, 320, 1990.
  [3] 刘玉圣,范光照,陈叶金. 高精度衍射光栅干涉仪的研制[J]. 工业计量,2006,16(2):1-3.
  [4] 余文新,胡小唐,邹自强等. 光栅纳米测量中的系统误差修正技术研究[C]. 计量学报,2002(2):100-105.
  [5] 马修水,费业泰,陈晓怀,赵 静. 一种新型纳米光栅传感器的理论研究[C]. 仪器仪表学报,2006(2):159-164.
  [6] 李 欣,黄世涛,张 云,冯之敬. 光栅莫尔条纹细分技术的研究[J]. 现代制造工程,No. 6,2004.
  [7] 祝绍其,邹海兴,包学诚. 衍射光栅[M]. 北京:机械工业出版社,1986.
  [8] 郁道银,谈恒英. 工程光学[M]. 北京:机械工业出版社,2006.省略。

推荐访问:位移 光栅 纳米 测量